(i) (a) True

$$|5-(-5)| = 20$$
 and $4|20$.
(b) False
 $100-4=96$ and $5 \neq 96$.
(c)
 $-2.5+2^{4}+2.4\cdot 10 = -10+16+80$
 $= 6+80$
 $= 0+2=2$
2

$$(2)(\alpha)$$
 $Z_{10}^{\times} = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$

(b)
$$\varphi(1_{0}) = 4$$

 $S_{0}, \overline{3}^{4} = \overline{1},$
 $1_{0} = 4 \cdot 2S_{0} + 2$
 $S_{0}, \overline{3}^{1_{0}} = (\overline{3}^{4})^{1_{0}} \cdot \overline{3}^{2} = \overline{1}^{2} \cdot \overline{3}^{2} = \overline{9}$
 $\overline{3}^{1_{0}} = \overline{2} = (\overline{3}^{4})^{1_{0}} \cdot \overline{3}^{2} = \overline{9} = \overline{2}$
 $\overline{3}^{1_{0}} = \overline{5}$
 $\overline{3}^{1_{0}} = \overline{3}$
 $\overline{3}^{1_{0}} = \overline{3} \cdot \overline{2} = \overline{6}$
 $\overline{3}^{1_{0}} = \overline{3} \cdot \overline{2} = \overline{5}$
 $\overline{3}^{1_{0}} = \overline{3} \cdot \overline{2} = \overline{5}$
 $\overline{3}^{1_{0}} = \overline{3} \cdot \overline{5} = \overline{15} = \overline{1}$

© Suppose
$$x^2 + x \equiv 2 \pmod{p}$$
 where p is an odd prime.
Then, $p \mid (x^2 + x - 2)$.
So, $p \mid (x + 2)(x - 1)$
Since p is prime we get $p \mid (x + 2)$ or $p \mid (x - 1)$.
So, $x \equiv -2 \pmod{p}$ or $x \equiv 1 \pmod{p}$.
D Suppose there exist integers x and y
where $15x^2 - 10x + 7y^2 = 11$.
Then in \mathbb{Z}_5 we would have $15x^2 - 10x + 7y^2 = 11$.
Then in \mathbb{Z}_5 we would have $15x^2 - 10x + 7y^2 = 11$.
So, $0x^2 + 0x + 2y^2 = 1$ in \mathbb{Z}_5 .
There is no such \overline{y} is \mathbb{Z}_5 .
There is no such \overline{y} is \mathbb{Z}_5 .
Thus, there are no
 $x, y \in \mathbb{Z}$ with
 $15x^2 - 10x + 7y^2 = 11$.